

Suspension sorting at the Sand Motor NCK theme day

B.J.A. Huisman

Context

PhD research

- Where do the sand grains go?
- Bed composition changes

Case : Sand Motor

• Big disturbance!

Approach

- Data -> Grab samples
- Models -> Processes

erc

Transport of a sediment mixture

What happens with individual grains in a mixture?

- **Equal** transport all grains?
- Fine grains move quicker?

Depends on the conditions!

Coarse grains transported more?

What happens with individual grains in a mixture?

Specific case : bed load / sheet flow

 Coarse fraction more mobile than the fine fraction?

Hassan at al. (1999, 2005) Van Rijn (2007)

- No effect of addition of 30% coarser sediment

Deltares

Roughness

TUDelft

What happens with individual grains in a mixture?

Close to initiation of motion

Individual grains of 1 mixture move at same threshold

Deltares

Wilcock (1993) Van Rijn (2007)

What happens with individual grains in a mixture?

What about conditions well above the threshold for motion?

-> most likely situation

erc

7

Application at Sand Motor

Relevance at the Sand Motor?

Do more mobile fine sand fractions imply bed composition changes?

Not necessarily!

-> need a transport gradient

Application at Sand Motor

Relevance at the Sand Motor?

Initial thoughts?

Divergence of wave-driven transport Coarsening of the bed

Most erosion 2 Most bed

composition

change?

TUDelft

Field evidence

- Coarsening of D₅₀ at peninsula
- Fining of the bed at the flanks
- Reduction of coarsening due to storms

Deltares

erc

Field evidence

• Coarsening of D₅₀

TUDelft

- Outside surfzone till MSL-15m
- A_{coarse bed} > A_{sandmotor}
- Reduction of coarsening due to storms

Mean bed shear stress (T_m)

erc

Related with hydrodynamics (T_m)

Deltares

Huisman et al. (2016)

Challenge the future 11

Relevance at the Sand Motor?

Observed

Most bed composition change in deeper water Related to

Related to the tidal contraction

Model predictions

• Predictions with Delft3D (Huisman et al., 2018)

- Using Delft3D 12 layers (Lesser et al., 2004)
- 2.5 year hindcast
- Tide + Wave time-series
- Sediment : 5 fractions
- Transport : 5 seperate computations
- Multi-layer bed administration

Model predictions

- - Sensitivity to tide
 + moderate waves
 - Storms hardly impact D50
 - Small Sand Motors have hardly and effect

Deltares

TUDelft

Principal processes

- What does it tell us?
 - Process is captured with physics in model
 - Suspension behaviour of coarse sand!
 - The difference in suspension behaviour is largest at intermediate shear stress regimes (Huisman et al., 2018)

Deltares

Challenge the future 15

erc

Relevance

• Similar bed composition & habitat changes at any coastal structure!

Design :

- Models available to predict
- Possible to build nature! (cross-shore extent / Fine sediment)

Science :

- Check hydrodynamic regime
 -> potential for sorting
- Morphology outside the surfzone
- Infer knowledge from bed sediment composition -> model validation

References

- Baba, J., Komar, P.D. (1981). Measurements and analysis of settling velocities of natural quartz sand grains. J. Sediment. Petrology, Vol. 51, pp. 631–640.
- Bagnold, R.A. (1966). An approach to the sediment transport problem from general physics. In: Geological Survey Professional Papers, Washington, USA, Vol. 422-1, pp. 1–37.
- Hassan, W.N.M., Kroekenstoel, D.F., Ribberink, J.S., van Rijn, L.C. (1999). Gradation effects on sand transport under oscillatory sheet-flow conditions. Research report, WL/Delft Hydraulics and Univ. of Twente, The Netherlands, 165 pp.
- Hassan, W.N., Ribberink, J.S. (2005). Transport processes of uniform and mixed sands in oscillatory sheet flow Coastal Engineering, Vol. 52, pp. 745-770.
- Huisman, B.J.A., De Schipper, M.A., Ruessink, B.G. (2016). Sediment sorting at the sand motor at storm and annual time scales. Mar. Geol. 381, 209–226.
- Huisman, B.J.A., Ruessink, B.G., De Schipper, M.A., Luijendijk, A.P., Stive, M.J.F., (2018). Modelling of bed sediment composition changes at the lower shoreface of the Sand Motor. Coast. Eng., Vol. 132, pp. 33-49.
- Komar, P.D. (1987). Selective grain entrainment by a current from a bed of mixed sizes: a reanalysis. J. Sediment. Petrology, Vol. 57 (2), pp. 203–211.
- Lesser, G. R.; Roelvink, J. A.; van Kester, J. A. T. M. & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, Vol. 51, pp. 883-915.
- Van Rijn, L.C. (2007). Unified view of sediment transport by currents and waves III: graded beds.
 J. Hydraulic Eng., Vol. 133 (7), pp. 761–775.
- Wilcock, P.R. (1993). Critical shear stress of natural sediments. Hydraul. Eng., Vol. 119 (4), pp. 491–505.

