

Book of Abstracts

NCK-days March 10 + 11 (2005) University of Twente Enschede

Book of Abstracts

NCK-days March 10 + 11 (2005) University of Twente Enschede

De NCK-dagen 2005 worden gesubsidieerd door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek NWO

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

NCK Programma secretariat:

Dr.ir. S.G.J. Aarninkhof P.O.Box 177, 2600 MH Delft, the Netherlands Rotterdamseweg 185, 2629 HD Delft, the Netherlands Tel. +31 (0)15 285 8889 Fax +31 (0)15 285 8582 e-mail: Stefan.Aarninkhof@wldelft.nl NCK@wldelft.nl www.nck-web.org

mrs. Jolien Mans-Donker P.O.Box 177, 2600 MH Delft, the Netherlands Rotterdamseweg 185, 2629 HD Delft, the Netherlands Tel. +31 (0) 15 285 8557 Fax +31 (0)15 285 8582 e-mail: Jolien.Mans@wldelft.nl NCK@wldelft.nl www.nck-web.org

Contents

Program NCK-days 2005

Abstracts

Van Heteren, Oost, Van der Spek. Island-terminus evolution as a function of changing ebb-tidal-	3
Trop Seasonal closure of tidel inlets in the central coast of Vietnam	1
Wintermann Sediment in duesd density surrouts	4
Winterwerp. Sediment-induced density currents	3
van de wert, Ribberlink, Doucette and O Donoghue. Detailed measurements of velocities and	6
concentrations over full-scale ripples in oscillatory flow	0
Dankers and winterwerp. The hindered settling of mud	/
De Boer, Pietrzak and winterwerp. On the vertical structure of the Rhine Region of Freshwater	0
Influence	ð
Solomatine and Velickov. Prediction of surges by multi-variate chaotic models	9
Ham, Pietrzak and Stelling. DELFIN: an unstructured grid model for coastal flows	10
Bruens. Applicability of morphological models for management issues in the Haringvliet estuary	11
Bhattacharya and Solomatine. A data-driven approach to the assessment of sedimentation in coastal	
areas	12
Spanhoff. Shoreface nourishments in The Netherlands	13
Nederbragt, Mulder, Walburg, Hoogervorst and Duin. Large-scale sand balance of The Netherlands	
coastal system as a policy indicator	14
Van Rijn and Schouten. Large-scale land reclamation at the Maasvlakte (Plan Leeuwestaart)	15
De Ronde. Need and use for uncertainty or bandwidth of morphological model results	16
De Groot, De Meijer and Bakker. Gamma radioactivity and sediment patterns on a layered salt marsh	17
Bouma e.a An ecological perspective on biophysical interactions-	18
Temmerman, Bouma, Govers, De Vries, Wang. Modelling sediment accumulation in tidal marshes	
identifying controlling factors on different time and spatial scales	19
Van Duren, Petersen, Wiles and Häse. The influence of turbulent mixing on mussel food supply – is	
the answer blowing in the wind or going with the tidal flow?	20
Dijkstra. Macrophytes in estuarine gradients	21
Van der Veen, Hulscher, Knaapen. Predicting large-scale bedforms in the north sea	22
Van der Meer, Németh, Hulscher. Sand waves and sediment transport equations	23
Boers. Developing a new dune erosion calculation rule for The Netherlands	24
Winberg and Aarninkhof . Video-driven prediction of coastline position	25
Smit. Reniers and Stive. Nearshore har response to time varying conditions	26
Buijsman and Ridderinkhof . Spatial and seasonal variability in sand wave migration in the	-0
Marsdien inlet	27
Briere Hulscher Idier and Roos Numerical modeling of sandbanks dynamics with Delft 3D	28
Roos and Hulscher Sand extraction from tidal sandbanks	29
Duessink Modelling tidel and wind induced alongshore currents in the nearshore zone	30
Van der Westhuysen, Zijlema, Battjes. Evaluation of a deep water source term balance in SWAN	30
Featuring local saturation-based dissipation	31
Van Thiel de Vries, van de Graaff, Reniers and Stive. Effects of wave groupiness on dune erosion	32
Roelvink. Coastal processes modelling at US West Coast	33
recenting at the west could	ee
Authors index	34
Map University of Twente	35
Participants NCK-days 2005	37

1

PROGRAM NCK-DAYS 2005

CAMPUS OF THE UNIVERSITY OF TWENTE, 'WAAIER' (BUILDING NO. 12)

Thursday, March 10

09.00 - 10.00	Registration with coffee & tea							
10.00 - 10.10	Opening							
10.10 - 11.10	Tidal Inlet Systems & Estuaries; moderator: Mathijs van Ledden (Royal Haskoning)							
	Van Heteren, Oost, VanIsland-terminus evolution as a function of changing ebb-tidal-delta							
	ler Spek configuration: Texel, The Netherlands							
	Tran	Seasonal closure of tidal inlets in the central coast of Vietnam						
	Winterwerp	Sediment-induced density currents						
11.10 - 11.15	Announcement of posters							
	Van de Werf, Ribberink,	Detailed measurements of velocities and concentrations over full-scale						
	Doucette and O'Donoghue	ripples in oscillatory flow						
	Dankers and Winterwerp	The hindered settling of mud						
	De Boer, Pietrzak and	On the vertical structure of the Rhine region of freshwater influence						
	Winterwerp							
	Solomatine and Velickov	Prediction of surges by multi-variate chaotic models						
	Ham, Pietrzak and Stelling	DELFIN: an unstructured grid model for coastal flows						
	Bruens	Applicability of morphological models for management issues in the						
		Haringvliet estuary						
11.15 – 12.30	Poster session with coffee & tea							
12.40 - 13.40	Lunch (in the Faculty Club, building no. 42)							
13.50 - 15.20	Tsunami session , lead by Prof. dr. Piet Hoekstra and Prof. em. dr. ir. Jurjen Battjes and drs. Mindert de Vries; moderator: Walther van Kesteren (WL Delft Hydraulics)							
15.20 - 15.50	Tea-break							
15.50 - 17.30	Coastal Management and Sand Budget Analysis; moderator: Henriët van der Veen (UT)							
	Bhattacharya and	A data-driven approach to the assessment of sedimentation in coastal						
	Solomatine	areas						
	Spanhoff	Shoreface nourishments in The Netherlands						
	Nederbragt, Mulder,	Large-scale sand balance of The Netherlands coastal system as a policy						
	Walburg, Hoogervorst and	indicator						
	Duin							
	Van Rijn and Schouten	Large-scale land reclamation at the Maasvlakte (Plan Leeuwestaart)						
	De Ronde	Need and use for uncertainty or bandwidth of morphological model results						
18.00 - 19.00	Drinks (in the Faculty Club,	building no. 42)						
19.00 - 22.00	Diner with invited speaker Club, building no. 42)	: Diederik Samson - member of the Dutch Parliament (in the Faculty						

PROGRAM NCK-DAYS 2005 (continued)

CAMPUS OF THE UNIVERSITY OF TWENTE, 'WAAIER' (BUILDING NO. 12)

Friday, March 11

08.15 - 08.45	Registration with coffee & tea						
08.45 - 10.05	Biogeomorphology; moderator: Cornelis Israël (RIKZ)						
	DeGroot, De Meijer and Gamma radioactivity and sediment patterns on a layered salt mars						
	Bakker						
	Bouwma e.a.	An ecological perspective on biophysical interactions					
	Temmerman, Bouma,	Modelling sediment accumulation in tidal marshes: identifying					
	Von Duron, Poterson	The influence of turbulent mixing on muscal food supply is the					
	Wiles and Häse	answer blowing in the wind or going with the tidal flow?					
10.05 10.10	A province mont of	answer brownig in the wind of going with the total now.					
10.05 - 10.10	Announcement of						
	Diikstra	Macrophytes in estuarine gradients					
	Van der Veen Hulscher	Predicting large-scale bedforms in the north sea					
	Knaapen	Treatening harge seare cearoning in the north sea					
	Van der Meer, Németh,	Sand waves and sediment transport equations					
	Hulscher						
	Boers	Developing a new dune erosion calculation rule for The					
		Netherlands					
	Wijnberg and	Video-driven prediction of coastline position					
	Aarninkhof						
	Smit, Reniers and Stive	Nearshore bar response to time varying conditions					
10.10 - 11.40	Poster session with coffee & tea						
11.50 - 12.50	Lunch (in the Faculty Club, building no. 42)						
13.00 - 14.00	Seabed & Shelf; moderator: Cynthia Reintjes (UU)						
	Buijsman and	Spatial and seasonal variability in sand wave migration in the					
	Ridderinkhof	Marsdiep inlet					
	Briere, Hulscher, Idier	Numerical modeling of sandbanks dynamics with Delft 3D					
	and Koos	Cand antrastica from tidal can the also					
14.00 14.00	Roos and Huischer	Sand extraction from tidal sandbanks					
14.00 – 14.30	Tea-break						
14.30 - 15.50	Beach Barrier Coast; mo	derator: Gerben de Boer (TUD)					
	Ruessink	Modelling tidal and wind-induced alongshore currents in the					
		nearshore zone					
	Van der Westhuysen,	Evaluation of a deep water source term balance in <i>SWAN</i> featuring					
	Zijlema Battjes	local saturation-based dissipation					
	van Thiel de Vries, van	les, van Effects of wave groupiness on dune erosion					
	Stive						
	Roelvink Coastal processes modelling at US West Coast						
15 50 16 00	Closuro	Coustar processos moderning at OS West Coust					
13.30 - 10.00	Ciosure						

De NCK-dagen 2005 worden gesubsidieerd door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek NWO

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

ISLAND-TERMINUS EVOLUTION AS A FUNCTION OF CHANGING EBB-TIDAL-DELTA CONFIGURATION: TEXEL, THE NETHERLANDS

Sytze van Heteren¹⁾, Albert P. Oost²⁾ and Ad J.F. van der Spek^{1,3)}

¹⁾Netherlands Institute of Applied Geoscience TNO – *National Geological Survey* ²⁾National Institute for Coastal and Marine Management/RIKZ ³⁾Netherlands Centre for Coastal Research/NCK

Long-term variability in barrier-terminus shape is not yet understood accurately. To explain observed changes through time on a decadal resolution, detailed island-terminus erosion-and-accretion records need to be linked to data on ebb-tidal-delta behavior. Historical maps of southwest Texel and the adjacent ebb-tidal delta, supplemented with quartz OSL (optically stimulated luminescence) ages of dune sand, span four centuries and show several links between coastal development and ebb-tidal-delta behavior. Updrift inlet migration governed recurved-spit formation (Figure 1), and changes in ebb-tidal-delta size and shape resulted in the formation of a bulge at the island terminus. Sustained updrift migration of the ebb-tidal delta resulted in a commensurate position shift of the bulge and eventually in flattening of the coastline. Regional coastalmanagement measures have had a strong influence on tidal-inlet and ebb-tidal-delta behavior, and therefore also on the changing shape of southwest Texel. Identification of relationships between ebb-tidal-delta behavior and changing barrier-terminus erosion-and-accretion patterns on a decadal to century time scale contributes to our understanding of coastal-system dynamics. Knowledge on such relationships is important where historical data are scarce and when future developments must be predicted for the development and optimization of coastal-management tools and policies. Any barrier terminus with preserved sets of dune ridges holds a potential record on past ebb-tidal-delta orientations, which provide clues on past changes in tidal prisms and wave versus tide dominance. Under the current ebb-tidal-delta configuration, the entire westward-oriented coast of southwest Texel is too exposed for lasting accretion. Bulges resulting from future merger of shoals with the coast in this area will be eroded rapidly.

Figure 1: Recurved spit on southwest Texel.

SEASONAL CLOSURE OF TIDAL INLETS IN THE CENTRAL COAST OF VIETNAM

Tran Thanh Tung¹⁾

¹⁾ Delft University of Technology, Hydraulic Engineering Section

Description of research

Central Coast Area of Vietnam has more than sixty inlets and river entrances discharging into the sea. They play vital roles in social-economic activities in the region.

Seasonally closure and migration of tidal inlets usually occur in micro-tidal, wave-dominated coastal environments where strong seasonal variations of river flow and wave climate are experienced. These inlets are closed to the ocean for a number of months every year due to the formation of a sand bar across the entrance or due to the growing of a sand-spit from updrift to downdrift.

The closure of a tidal inlet or the shoaling of a river entrance at undesired periods would cause significant negative impacts to the flood discharge, coastal environment, ecological system, navigation, and fishery and cause unsustainable development of socio-economy in the region.

Figure 1: Air-photo of the Tu Hien Inlet, in Central Coast of Vietnam, in May 2004

Therefore, community interest in finding methods to keep these inlets permanently open has always been high. However, before attempting any engineering solutions to keep these inlets perennially open, it would be wise and practical to gain more insight into the morphodynamic processes governing seasonal inlet closure.

A special approach to control the closure of tidal inlets and shoaling of rivers entrances in the Central Coast Area of Vietnam must be recognized as a priority issue of the coastal zone management and to fulfil the highly demands from local people. The Tu Hien inlet, located in the Thua Thien Hue Province, Central Coast of Vietnam, is selected as a case-study for this research.

Thus, the main aims of this study are: i) identifying the dominant factors that influence to the opening and closure cyclic of tidal inlet; ii) implementation a valid model/technique to simulate the morphological process governing the closure and opening cycle of tidal inlets, and iii) applying this model/technique to develop a strategy to control/ stabilize tidal inlets under specific boundary conditions and social economic context in the Central Coast of Vietnam.

SEDIMENT-INDUCED DENSITY CURRENTS

Han Winterwerp¹⁾

¹⁾Delft University of Technology and WL | Delft Hydraulics

Suspensions of fine-grained sediment, such as cohesive sediment and silt, behave as a single-phase fluid. This implies that gradients in suspended sediment concentration are accompanied by gradients in fluid density, both in vertical and in horizontal direction. At scales much larger than the particle size, these density gradients may generate 1) interfaces in the water column (lutoclines), 2) damping of vertical turbulent mixing, and 3) baroclinic pressure gradients. These effects are referred to as sediment-fluid interactions.

It has been shown that these sediment-fluid interactions can generate sediment-induced density currents at already very moderate sediment concentrations, i.e. a few 10 to 100 mg/l, depending on the local hydrodynamic conditions, as encountered in for instance the North Sea. These sediment-induced density currents can contribute largely to the dispersion of fine sediment in harbour basins, on intertidal areas and in secondary channels.

Let us consider a flow in an open channel laden with cohesive sediment, in equilibrium with the local hydrodynamic conditions, i.e. at capacity conditions. If for some reason the amount of sediment in that channel increases (or, more likely, the flow velocity decreases), part of the sediment is deposited on the bed forming a layer of fluid mud because of the high water content of the mud flocs. This layer of fluid mud damps vertical turbulent mixing, reducing the transport capacity of the flow further. As a result a snowball effect occurs and eventually the entire sediment concentration profile and turbulent field collapse. This condition is referred to as saturation, which may be observed in many West European water systems.

Also in hyper-concentrated suspensions (i.e. a few 100 to 1000 g/l), as encountered in the Yellow River, saturation may occur. However, the time scales of turbulence collapse are much larger than in low-concentrated suspensions because of hindered settling effects. Moreover, it can be shown that hyper-concentrated flows stabilise when the sediment load increases. Such an increase though is not likely to be caused by bed erosion, as the permeability of the suspension is very small (hindered erosion regime). But the riverbanks can be eroded efficiently and rapidly, altering the river course continuously. This explains why hyper-concentrated flows are so persistent, yet unstable in their course.

It is shown that the behaviour of these low- and hyper-concentrated sediment-laden flows are both manifestations of the same physical processes, though at different scales, and can be described with the same physical laws. The most important parameters that govern the processes are the flux Richardson number, and the effective settling velocity of the sediment, i.e. including the effects of hindered settling. It is also shown that sediment-laden flows at concentrations in between the low-and hyper-concentrated regime cannot be stable and will collapse to form thick deposits of fine sediment.

DETAILED MEASUREMENTS OF VELOCITIES AND CONCENTRATIONS OVER FULL-SCALE RIPPLES IN OSCILLATORY FLOW

J.J. van der Werf¹, J.S Ribberink¹, J.S. Doucette² and T. O'Donoghue²

¹⁾Water Engineering and Management, University of Twente ²⁾Department of Engineering, University of Aberdeen

For the development and validation of process-based models for predicting wave-generated sand transport over rippled beds, measurements of the relevant processes under controlled laboratory conditions are required. Although a very large number of laboratory studies have been carried out on wave-generated ripples, there is a lack of reliable measurements in relevant scale ranges, which especially applies for intrawave measurements over mobile beds. Recently, new experiments have been carried out in the Aberdeen Oscillatory Flow Tunnel (AOFT) at the University of Aberdeen in which detailed measurements have been made of the time-dependent velocity and concentration fields above full-scale ripples.

The AOFT is a large laboratory facility in which the near-bed horizontal flows, equivalent in period and amplitude to the near-bed flows of full-scale waves, can be generated over sand beds. The experimental series consisted of 3 different regular asymmetric (second-order Stokes) flow conditions. The experiments involved very detailed measurements of 1) concentrations using suction sampling, an acoustic backscatter system (ABS) and an optical concentration meter (OPCON); 2) velocity measurements using cross-correlation particle image velocimetry (PIV) supported by velocity profile measurements using an ultrasonic velocity profile; 3) bed morphology using an acoustic sand ripple profiler and 4) net transport rates.

PIV, ABS and OPCON yield detailed measurements of the flow and suspended sediment field around and over the ripple throughout the flow period. As an example, Figure 1 shows OPCON measurements of the instantaneous concentrations during a wave cycle at different elevations above the ripple crest in which t/T=0 corresponds to flow reversal from offshore to onshore direction and t/T=0.43 to flow reversal from onshore to offshore direction.

Figure 1: OPCON measurements of the instantaneous concentrations during a wave cycle at different elevations above the ripple crest.

This figure shows a large concentration peak just after flow reversal (t/T=0.55), which is associated with the passage of an injected suspension cloud generated by vortex shedding at the lee-side of the ripples. This peak is followed by a lower peak around t/T=0.75, and an even smaller third peak at t/T=0.95, which are both due to the passage of advected suspension clouds of adjacent ripples in the onshore direction. Higher up in the flow at z=168 mm, the concentration varies very little with time and the three peaks are not present.

The combined velocity and concentration measurements constitute a unique dataset on the detailed intrawave sand transport processes over full-scale ripples in oscillatory flow. This dataset will be used to increase our insight in the wave-induced sediment transport over ripples. For example, we are interested in the nearbed streaming and the number and timing of the various concentration peaks.

This research is performed in the framework of the EU project SANDPIT through the 5th Framework of the EU Community Research Programme under contract number EVK3-CT-2001-00056.

THE HINDERED SETTLING OF MUD

Petra Dankers¹⁾ and Han Winterwerp²⁾

¹⁾Delft University of Technology, Hydraulic Engineering ²⁾WL | Delft Hydraulics and Delft University of Technology, Environmental Fluid Mechanics

Sand-mud mixtures occur in many natural environments, e.g. estuaries and rivers, but also at dredging sites. When large amounts of suspended sediment are present in these environments there can be several consequences for the ecosystem, e.g. decreased light penetration, decreased primary production and increased sedimentation rates. The importance of these effects merely depends on the dispersion, dilution and residence time of the sediment in the water. Information on the residence time of sand-mud mixtures in the water column is, however, limited. For sand particles the Stokes settling velocity can be used but this method does not apply for cohesive sediment, merely because the density of mud flocs is not known and the flocs are not spherically shaped. A further difficulty arises when the hindered settling regime is reached. This happens when, in the case of cohesive sediment, concentrations exceed a few g/l. In the hindered settling regime, volumetric concentrations are so high that the particles do not behave independently but interact. This leads to a significant decrease in effective settling velocity.

In the past, several hindered settling models have been used to determine the effective settling velocity, all for sand or cohesive sediment suspensions separately and not for mixtures. In this study we focus on the cohesive sediment part first; sand-mud mixtures are incorporated at a later stage.

The hindered settling equation commonly used for cohesive sediment suspensions is by Mehta (1986), which is a modified version of the Richardson and Zaki (1954) formula:

$$w_s = w_{s,r} (1 - k\phi)^n \qquad \text{Eq. 1}$$

where w_s is the effective hindered settling velocity, $w_{s,r}$ is the reference settling velocity, i.e. the settling velocity of a single grain in still water, ϕ is the volumetric concentration of mud flocs ($\phi = c/c_{gel}$), c is the suspended sediment concentration by mass, c_{gel} is the gelling concentration by mass, k is an empirical coefficient (\cong 1) and n is a function of the particle Reynolds number: 2.5 < n <5.5. In this study a new formula for the hindered settling of cohesive sediment flocs is proposed (Winterwerp, 2002):

$$w_s = w_{s,r} \frac{(1-\phi)^m (1-\phi_p)}{1+2.5\phi}$$
 Eq. 2

where ϕ_p is the volumetric concentration of primary particles and *m* is an exponent accounting for nonlinear effects. In this equation the effects of return flow, buoyancy and augmented viscosity are incorporated to account for hindered settling. This equation is tested by means of experimental data obtained from settling columns with kaolin suspensions.

References

Mehta, A.J., 1986. Characterisation of cohesive sediment properties and transport processes in estuaries. In: Mehta, AJ. (Ed.), Estuarine Cohesive Sediment Dynamics, Lecture Notes in Coastal and Estuarine Studies, No 14, Springer, Berlin, pp. 290-325.

Richardson, J.F. and Zaki, W.N., 1954. Sedimentation and fluidization, Part I. Transactions of the Institution of Chemical Engineers 32, 35-53.

Winterwerp, J.C., 2002. On the flocculation and settling velocity of estuarine mud. Continental Shelf Research 22, pp. 1339-1360.

PREDICTION OF SURGES BY MULTI-VARIATE CHAOTIC MODELS

Dimitri Solomatine¹⁾, Slavco Velickov²⁾

¹⁾UNESCO-IHE Institute for Water Education, ²⁾SKF Research

Description of research

The problem of predicting surge water levels is important for ship guidance and navigation. The data collected in the coastal waters of the Netherlands (Hoek van Holland) were analysed with an objective of making such prediction. The applied linear prediction methods including autocorrelation and ARIMA models could not provide sufficient accuracy.

Recently developed methods in nonlinear dynamics and chaotic time series analysis are used in this study, to analyze, delineate and quantify the underlying coastal water level dynamics in the North See along several locations at the Dutch coast. This study analyses seven water level data sets, five of which characterise coastal locations and two relate to open sea locations. Both the water level data and the surge data (with the astronomical tide removed) are analyzed. The main objective of this analysis is to delineate and quantify the underlying dynamics of the coastal water levels and to quantify the variability and predictability of the coastal dynamics along the Dutch coast based on time series of observables. Having reconstructed the dynamics of the water levels, adaptive multivariate local models based on chaos theory were built which yield reliable and accurate short-term predictions.

For a single-variate chaotic model, RMSE is 3.6 cm for 1 hour, and 6.1 cm for 3 hours ahead prediction. The multi-variate chaotic model's RMSE for the 10 hours ahead prediction was about 10.5 cm, which is well comparable with the physically-based numerical model WAQUA currently being used in practice. This demonstrates that modelling methods and techniques based on the theory of nonlinear dynamics and chaos can serve as an efficient tool for accurate and reliable short-term predictions of water levels in order to support decision-makers in ship navigation.

Figure 1. Mixture of models including future meteorological information. Prediction of the surges at Hoek van Holland zoomed at the stormy period (1-Jan-1995->31-Mar-1995) based on hourly time series (solid grey line). The prediction horizon is 6 hours. Mixture of local multivariate models (dark solid line) were used. The RMSE is 8.02 cm. Bottom figure shows the error.

APPLICABILITY OF MORPHOLOGICAL MODELS FOR MANAGEMENT ISSUES IN THE ESTUARY OF THE HARINGVLIET

Ankie Bruens

Rijkswaterstaat RIKZ

Abstract

The estuary of the Haringvliet has an important ecological function. Within the framework of European ecological regulations, protected areas are designated. Human interventions are not permitted in case they have a destructive effect on the ecological function of the area. Coastal managers need to examine and evaluate (future) interventions for possible decline. The following morphological parameters are used to assess the ecological value of the area: - acreage intertidal area – location of shoals and channels – composition of the sediment

One of the management issues of this area reads: To what extent will the ecological function of the estuary be affected by a different discharge scenario of the Haringvliet sluices and/or the construction of MaasvlakteII? The development of the above-mentioned parameters need to be predicted and the value of the predicitions need to be assessed.

Within the project K2005*Voordelta, part of the Rijkswaterstaat KUST2005 program, activities are focused on the applicability of long-term morphological models for management issues concerning the effects of interventions in estuaries in general and the Haringvliet in particular. To this end different models are applied and/or analysed.

Perception of the value of numerical forecastings can be obtained by determining the (ultimate) range in predicted parameter values. A variety of causes can give rise to this range in values: extent of schematizing, extent to which relevant physical process are taken into account, applied boundary conditions and initial input values. This perception of the value of forecasting is important for decision makers. A methodical approach to retrieve the range in output values can lead to a better explanation of causes, and therefore lead to an improvement of applicability of numerical models for managerial issues.

The results of the K2005*Voordelta project in terms of insight in the range of model predictions and the underlying causes will be presented.

Authors index	page	Authors index	page	
Aarninkhof	25	Petersen	20	
Bakker	17	Pietrzak	8, 10	
Battjes	31	Reniers	26, 32	
Bhattacharya	12	Ribberink	6	
Boer, de	8	Ridderinkhof	27	
Boers	24	Roelvink	33	
Bouma	18, 19	Ronde, de	16	
Briere	28	Roos	28, 29	
Bruens	11	Ruessink	30	
Brun	18	Rijn, van	15	
Buijsman	27	Schouten	15	
Dankers	7	Smit	26	
Doucette	6	Solomatine	9, 12	
Duin	14	Spanhoff	13	
Duren, van	18, 20	Spek, van der	3	
Dijkstra	21	Stelling	10	
Friedrichs	18	Stive	26, 32	
Govers	19	Temmerman	18, 19	
Graaff, van de	32	Thiel de Vries, van	32	
Graf	18	Tran	4	
Groot, de	17	Veen, van der	22	
Ham	10	Velickov	9	
Häse	20	Vries, de	18, 19	
Herman	18	Walburg	14	
Heteren, van	3	Wang	19	
Hoogervorst	14	Werf, van de	5	
Hulscher	22, 23, 28, 29	Westhuysen, van der	31	
Idier	28	Wiles	20	
Knaapen	22	Winterwerp	5, 7, 8	
Koppel, van de	18	Wijnberg	25	
Meer, van der	23	Zijlema	31	
Meijer, de	17			
Mulder	14			
Nederbragt	14			
Németh	23			
O'Donoghue	6			
Oost	3			
Peralta	18			

Map Uni Twente

Map Uni Twente

Participants NCK-days March 10 + 11, 2005

Last name	First name	<u>Company</u>	<u>Address</u>	Postal Code	<u>City</u>	<u>E-mail</u>	Phone number
Aarninkhof	Stefan	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	stefan.aarninkhof@wldelft.nl	015 2858889
Bakker	Willem	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	willem.bakker@wldelft.nl	015-2858929
Battjes	Jurjen	TU Delft	Postbus 5048	2600 GA	Delft	a.blom@ctw.utwente.nl	
Boer, de	Gerben	TU Delft	Postbus 5048	2600 GA	Delft	g.j.deboer@citg.tudelft.nl	015-2783365/015-2858534
Boers	Marien	RIKZ	Postbus 20907	2500 EX	Den Haag	m.boers@rikz.rws.minvenw.nl	070-3114236
Boois, de	Hans	NWO	Postbus 93510	2509 AM	Den Haag	boois@nwo.nl	070-3440752
Bouma	Tjeerd	NIOO-CEME	Postbus 140	4400 AC	Yerseke	t.bouma@nioo.knaw.nl	0113-577454
Briere	Christophe	Universiteit Twente	Postbus 217	7500 AE	Enschede	c.briere@ctw.utwente.nl	053-4894446
Bruens	Ankie	RIKZ	Postbus 20907	2500 EX	Den Haag	a.w.bruens@rikz.rws.minvenw.nl	070-3114398
Buijsman	Maarten	NIOZ	Postbus 59	1790 AB	Den Burg	mbui@nioz.nl	0222 369564
Burgh, van der	Lisette	Universiteit Twente	Postbus 217	7500 AE	Enschede	L.m.vanderburgh@ctw.utwente.nl	053-4892585
Buschman	Frans	Wageningen Universiteit	Droevendaalsesteeg 35	6708 PB	Wageningen	frans.buschman@wur.nl	06-33800679
Cohen	Anna	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	anna.cohen@wldelft.nl	015-2858949
Dankers	Petra	TU Delft	Stevinweg 1	2600 GA	Delft	p.j.t.dankers@ct.tudelft.nl	015-2784070
Dijkstra	Jasper	TU Delft	Stevinweg 1	2628 CN	Delft	j.t.dijkstra@citg.tudelft.nl	015-2784806
Dohmen-Janssen	Marjolein	Universiteit Twente	Postbus 217	7500 AE	Enschede	c.m.dohmen-janssen@ctw.utwente.nl	053-4894209
Dorst	Leendert	Universiteit Twente	Postbus 90704	2509 LS	Den Haag	II.dorst@mindef.nl	070-3162813
Dunsbergen	Daan	RIKZ	Postbus 20907	2500 EX	Den Haag	d.w.dunsbergen@rikz.rws.minvenw.nl	070-3114233
Duren, van	Luca	NIOO-CEME	Postbus 140	4400 AC	Yerseke	l.vanduren@nioo.knaw.nl	0113-577477
Effing	Bas	Universiteit Twente	Postbus 217	7500 AE	Enschede	b.m.effing@student.utwente.nl	053-4894212
Elias	Edwin	TU Delft	Stevinweg 1	2600 GA	Delft	e.p.l.elias@ct.tudelft.nl	015-2781233
Graaff, van de	Jan	TU Delft	Stevinweg 1	2611 CN	Delft	j.vandegraaff@citg.tudelft.nl	015-2784846
Groot, de	Alma	KVI, RuG	Zernikelaan 25	9747 AA	Groningen	a.v.de.groot@rug.nl	050-3633565
Ham	David	TU Delft	Stevinweg 1	2628 CN	Delft	D.A.Ham@citg.tudelft.nl	015-2784069
Herman	Peter	NIOO-CEME	Postbus 140	4400 AC	Yerseke	p.herman@nioo.knaw.nl	0113-577475
Heteren, van	Sytze	TNO-NITG	Postbus 80015	3508 TA	Utrecht	sytze.vanheteren@tno.nl	030 2564565
Hoekstra	Piet	Universiteit Utrecht	Postbus 80115	3508 TC	Utrecht	p.hoekstra@geo.uu.nl	030-2532753/2749
Hoffman	Tessa	Universiteit Twente	Postbus 217	7500 AE	Enschede	t.j.hoffman@student.utwente.nl	06 16798723
Hommes	Saskia	Universiteit Twente	Postbus 217	7500 AE	Enschede	s.hommes@ctw.utwente.nl	053-4892821
Hulscher	Suzanne	Universiteit Twente	Postbus 217	7500 AE	Enschede	s.j.m.h.hulscher@utwente.nl	053-4894256
Israël	Cornelis	RIKZ	Postbus 20907	2500 EX	Den Haag	c.israel@rikz.rws.minvenw.nl	070-3114303
Jacobs	Walter	TU Delft	Stevinweg 1	2628 CN	Delft	W.Jacobs@citg.tudelft.nl	015-2785064
Jacobse	Sjaak	RIKZ	Kortenearkade 1	2518 AX	Den Haag	j.j.jacobse@rikz.rws.minvenw.nl	070-3114213
Kesteren, van	Walther	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	walther.vankesteren@wldelft.nl	06 53398373
Knaapen	Michiel	Universiteit Twente	Postbus 217	7500 AE	Enschede	M.A.F.Knaapen@utwente.nl	053-4892831
Koning, de	Jeroen	Universiteit Twente	Postbus 217	7500 AE	Enschede	j.a.dekoning@student.utwente.nl	06 11352789
Ledden, van	Mathijs	Royal Haskoning	Postbus 151	6500 AD	Nijmegen	m.vanledden@royalhaskoning.com	024-3284227
Lee, van der	Willem	RIKZ	Postbus 20907	2500 EX	Den Haag	w.t.b.vdLee@rikz.rws.minvenw.nl	070-3114522
	Anne	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	anne.vanloon@wldelft.nl	015-2858919

Loon, van							
Mark, van der	Rolien	Universiteit Twente	Postbus 217	7500 AE	Enschede	c.f.vandermark@ctw.utwente.nl	053-4892959
Meer, van der	Fenneke	Universiteit Twente	Postbus 217	7500 AE	Enschede	f.m.vandermeer@ctw.utwente.nl	053-4892585
Meilianda	Ella	Universiteit Twente	Postbus 217	7500 AE	Enschede	e.meilianda@ctw.utwente.nl	053-4894753
Montserrat	Francesc	TU Delft	Korringaweg 7	4401 NT	Yerseke	f.montserrat@nioo.knaw.nl	0113-577470
Mulder	Jan	RIKZ	P.O. Box 20907	2500 EX	Den Haag	j.p.m.mulder@rikz.rws.minvenw.nl	070-3114234
Nederbragt	Gertjan	RIKZ	Postbus 20907	2500 EX	Den Haag	g.nederbragt@rikz.rws.minvenw.nl	070-3114208
Nijs, de	Michel	TU Delft	Postbus 5048	2600 GA	Delft	m.a.j.denijs@citg.tudelft.nl	015-2785064
Nipius	Karoune	Boskalis / Hydronamic	Rosmolenweg 20	3350 AE	Papendrecht	k.g.nipius@boskalis.nl	078-6969821
Onderwater	Martijn	Alkyon	Voosterweg 28	8316 PT	Marknesse	Onderwater@Alkyon.nl	0527-248109
Perez-Lapena	Blanca	Universiteit Twente	Postbus 217	7500 AE	Enschede	b.perez-lapena@ctw.utwente.nl	053-4894514
Pietrzak	Julie	TU Delft	Stevinweg 1	2600 GA	Delft	J.Pietrzak@citg.tudelft.nl	015-2785466
Quartel	Susanne	Universiteit Utrecht	Heidelberglaan 2	3584 CS	Utrecht	s.quartel@geog.uu.nl	030-2535735
Reintjes	Cynthia	Universiteit Utrecht	Heidelberglaan 2	3584 CS	Utrecht	c.reintjes@geog.uu.nl	030-2532764
Reniers	Ad	TU Delft	Stevinweg 1	2628 CN	Delft	ad@dutcvmm.ct.tudelft.nl	015-2784778
Ribberink	Jan	Universiteit Twente	Poistbus 217	7500 AE	Enschede	j.s.ribberink@utwente.nl	053-4892767
Roelvink	Dano	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	dano.roelvink@wldelft.nl	015-2858706
Ronde, de	John	RIKZ	Postbus 20907	2500 EX	Den Haag	j.g.dronde@rikz.rws.minvenw.nl	070-3114438
Roos	Pieter	Universiteit Twente	Postbus 217	7500 AE	Enschede	p.c.roos@utwente.nl	053-4895608
Ruessink	Gerben	Universiteit Utrecht	Postbus 80.115	3508 TC	Utrecht	g.ruessink@geog.uu.nl	030-2532405
Rijn, van	Leo	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	leo.vanrijn@wldelft.nl	015-2858898
Santen, van	Pim	Universiteit Utrecht	Postbus 80115	3508 TC	Utrecht	p.vansanten@geog.uu.nl	030-2535774
Schüttenhelm	Ruud	TNO-NITG	Anna van Saksenlaan 12	2 2082 BG	Santpoort-Zuio	dr.schuttenhelm@planet.nl	023-5379800
Schutter, de	Joop	UNESCO-IHE	Westvest 1	2611 DA	Delft	j.deschutter@unesco-ihe.org	015-2151715
Smit	Marije	TU Delft	Postbus 5048	2600 GA	Delft	m.w.j.smit@ct.tudelft.nl	015-2789457
Spek, van der	Ad	TNO-NITG	Postbus 80015	3508 TA	Utrecht	ad.vanderspek@tno.nl	030-2564572
Stive	Marcel	TU Delft	Postbus 5048	2600 GA	Delft	m.j.f.stive@citg.tudelft.nl	015-2783348
Temmerman	Stijn	NIOO-CEME	Postbus 140	4400 AC	Yerseke	s.temmerman@nioo.knaw.nl	0113-577452
Terwindt	Joost	emeritus	Doornseweg 28a	3832 RM	Leusden	jenmterw@euronet.nl	033-4618039
Thiel de Vries, van	Jaap	TU Delft	Postbus 5048	2600 GA	Delft	j.s.m.vanthieldevries@citg.tudelft.nl	015-2783426
Tiessen	Meinard	Universiteit Twente	Postbus 217	7500 AE	Enschede	m.c.h.tiessen@student.utwente.nl	
Tung, Thanh	Tran	TU Delft	Stevinweg 1	2600 GA	Delft	T.T.Tran@citg.tudelft.nl	015-2789458
Veen, van der	Henriët	Universiteit Twente	Postbus 217	7500 AE	Enschede	h.h.vanderveen@utwente.nl	053-4891013
Verlaan	Martin	RIKZ	Postbus 20907	2500 EX	Den Haag	m.verlaan@rikz.rws.minvenw.nl	06 22203044
Vriend, de	Huib	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	huib.devriend@wldelft.nl	015-2858937
Vries, de	Mindert	Universiteit Twente	Postbus 217	7500 AE	Enschede	m.b.devries@ctw.utwente.nl	053-4893546
Wang	Zheng Bing	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	Zheng.Wang@wldelft.nl	015-2858802
Werf, van der	Jebbe	Universiteit Twente	Postbus 217	7500 AE	Enschede	j.j.vanderwerf@utwente.nl	053-4892959
Westhuysen, van der	André	TU Delft	Stevinweg 1	2628 CN	Delft	a.j.vander.westhuysen@citg.tudelft.nl	015-2783255
Wijnberg	Kathelijne	Universiteit Twente	Postbus 217	7500 AE	Enschede	k.m.wijnberg@ctw.utwente.nl	053-4894701
Winterwerp	Han	WL Delft Hydraulics	Postbus 177	2600 MH	Delft	han.winterwerp@wldelft.nl	015-2858813
Zitman	Tjerk	TU Delft	Postbus 5048	2600 GA	Delft	t.j.zitman@citg.tudelft.nl	015-2784739

Addendum participants NCK-days March 10 + 11, 2005

Last name	First name	Company	Address	Postal code	City	E-mail	Phone number
Bhattacharya	Biswa	UNESCO-IHE	Postbus 3015	2601 DA	Delft	bhatt7@unesco-ihe.org	015-2151815
Dam	Gerard	Svasek Hydraulics	Postbus 91	3000 AB	Rotterdam	dam@svasek.com	010-4671361
Dardengo	Leonardo	Universiteit Twente	Beatrixstraat 121	7511 KR	Enschede	ldardengo@yahoo.co.uk	053-4330592
Solomatine	Dimitri	UNESCO-IHE	Postbus 3015	2601 DA	Delft	d.solomatine@unesco-ihe.org	015-2151815