

31/01/2013

A hyperspectral view of the coastal zone

Els Knaeps, Sindy Sterckx, Luc Bertels, Dries Raymaekers, Ben Somers, Stephanie Delalieux, Bart Deronde, Koen Meuleman

NCK theme day "Remote Sensing of the Coastal Zone" - 25/01/2013

Overview

- » Image acquisitions
- » Applications
 - » Water quality retrieval
 - » Classification of salt marshes and tidal flats
 - » Dune vegetation classification

Hyperspectral imagery?

Water

Vegetation

Soil

Hyperspectral imagery?

Image acquisitions – the APEX sensor

APEX – Airborne Prism EXperiment

Spectral Performance	VNIR	SWIR			
Spectral Range	380.5 – 971.7 nm	941.2 – 2501.5 nm			
Spectral Bands	Up to 334 (default: 114)	198			
	(number of VNIR spectral rows programmable via binning pattern upload)				
Spectral Sampling Interval	0.5 ÷ 8 nm	5 ÷ 10 nm			
	(default: 11 ÷ 8 nm)				
Spectral Resolution (FWHM)	0.6 ÷ 6.3 nm	6.2 ÷ 11 nm			
Spatial Performance					
Spatial Pixels (acrosstrack)	1000				
FOV	28°				
IFOV	0.028° (ca 0.5 mrad)				
Spatial Sampling Interval (across track)	1.75 m @ 3500 m AGL				
Sensor Characteristics					
Туре	CCD	CMOS			
Dynamic Range	14 bit encoding	13 bit encoding			
Pixel Size	$22.5~\mu m$ x $22.5~\mu m$	30 µm x 30 µm			
Smile		0.35 pixel			
Keystone (Frown)	Average, less than	0.35 pixel			
Co-Registration		0.55 pixel			

5

APEX system overview

© 2010, VITO NV

APEX flights 2011

APEX quicklook from Oostende (B), 23/06/09

APEX quicklook from Baden (CH), 17/06/09

Image acquisitions – LiCrIS – liquid Crystal based Imaging Spectrometer

LiCrIS set-up

LiCrIS set-up

Water quality

30

Hyperspectral flightcampaigns and water quality retrieval at the Scheldt river

Hyperspectral flightcampaigns and water quality retrieval at the Scheldt river

Hyperspectral flightcampaigns and water quality retrieval at The Wadden Sea

Hyperspectral flightcampaigns and water quality retrieval at The Wadden Sea

TSM concentrations in the Wadden Sea (in mg L⁻¹), mosaic of flight line 1, 2 and 3

RMSE: 2.7 mg L⁻¹ or 36% for the TSM concentration

CHL concentrations in the Wadden Sea (in mg L⁻¹), mosaic of flight line 1, 2 and 3

a RMSE of 2.9 mg L⁻¹ or 32% for the CHL $_{0.2010,1}^{31/01/2}$ concentration

Water leaving reflectance – SWIR?

SWIR is potentially interesting:

- Atmospheric transmission windows
- SWIR spectral bands available in future spaceborne sensors (e.g. Hyspiri, OLCI)
- Local decrease in pure water absorption

Knaeps, E. et al., Remote Sensing of Environment 120 (2012) 133-144

SeaSW

Water leaving reflectance – SWIR?

Knaeps, E., Raymaekers, D., Sterckx, S, Ruddick, K., Dogliotti, A.I.. 2012. In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary, *Remote Sensing of Environment, Sentinel special issue*, 112

NETHERLANDS

NRE OCEA

Leuver

BRUSSEL

Gironde river

SeaSWIR

Hyperspectral Remote Sensing of vegetation in the dynamic dunes along the Belgian Coast

Situating the study area: "De Westhoek"

Classification approach

- The MNF reduces the dimensionality of the dataset and retains a small number of noise-free components.
- Compares image spectra to reference spectra of spectral libraries
- Two spectra are treated as vectors in N-d space (N = number of spectral bands)
- Similarity determined between two spectra by calculating spectral angle between both

Class names and vegetation types

\rightarrow Classification was done on two levels.

	Level 0 Level 1								
Class Id.	Class names	Class Id.	Nr. Rois CASI-2/AISA	Class na					
1 Marram dun		1	9 / 10	Ammoare_Fix	Ammophila arenaria				
	Marram dune	2	4 / 4	Ammoare_Vit					
2 Tall herbs	3	3 / 3	Calaepi	Calamagra)				
	10	5 / 5	Rubucae	Rubus					
3 Grasslan		4	12 / 10	Grass_green	Diverse grassland types Rosa pimpinelliflolia				
	Grassland	9	3 / 3	Rosapim					
4	Grassland & soil	5	16 / 13	Grass_soil	Overall Accuracy %		MNF -	MNF + SAM	
5 Scrubs		6	21 / 20	Hipprha		1	CASI-2	AIS	
		7	4 / 4	Hipprha_Calaepi	Level 0 Level 1	mean	52	68	
		8	18 / 17			weighted	72	89	
		0	10/17	Liguvui		mean	54	62	
	Scrubs	11	13 / 14	Salicin		weighted	44	59	
		12	29 / 23	Salirep	Salix repens				
	-	13	3 / 3	Salirep_Rubucae	Salix repens & (b)				
		14	18 / 11	Sambnig	Sambucus nigra				
/Ito	Moss dune	15	14 / 14	Tortrur	Tortula ruralis			-	
vision	on technology	//	31/01/2	.013				25	

© 2010, VITO NV

The AISA-Eagle image

© 2010, VITO NV

Classification result of the AISA image using SAM

What's in a pixel?

Image pixels often integrate the spectral information of different ground components (soil & vegetation, or different vegetation types). This mixing effect causes "spectral blurring" and can drastically reduce the quality of our classification

What's in a pixel?

Left: Pixel-based classification of the heathland area in the Kalmthoutse Heide study area. Right: sub-pixel classification of the heathland area in the Kalmthoutse Heide with different age classes

Large-scale mapping of the riverbanks, mud flats and tidal marshes of the Scheldt basin, based on airborne imaging spectroscopy and LiDAR

LARGE-SCALE MAPPING OF THE RIVERBANKS, MUD FLATS AND SALT MARSHES OF THE SCHELDT BASIN, USING AIRBORNE IMAGING SPECTROSCOPY AND LIDAR

Classification; the expert system

By using an expert system, 13 meaningful classes could be defined.

Classification; the unclassified composit

Sub-area: Schelde_1a, a composit of 5 flight lines.

Classification; classified result by the expert system

Thank you

- » els.knaeps@vito.be
- » APEX: <u>www.apex-esa.org</u>
- » Hyperspectral Research: <u>http://hyperspectral.vgt.vito.be</u>
- » Code library : Download available at: <u>https://sourceforge.net/projects/enviidlcodelibr</u>

