NCK theme day OASE

Offshore Activities and seabed evolution
Opportunities & Challenges

Luitze Perk
Trends

Offshore developments:

- Ongoing construction of Offshore Windfarms
- Related need for burial of Export- and infield cables
- Growing demand of sand for nourishments (from sand mining areas)
Questions from our Clients

Offshore Windfarms
Optimal locations of individual wind turbines?
Scour extend /magnitude at wind turbines & offshore constructions?
Seabed level > 40 years?

Cables
Minimum required burial depth cables > 40 years?
Maximum possible burial depth cables > 40 years?
Optimal cable routing with lowest CAPEX-OPEX?
Best landfall locations?
Maintenance dredging requirements of trenches/ dredged channels
Effect of sweeping (cut-off crests) sand waves
Most plausible location & depth of Uxo's 1940 => 2018?

Sand mining areas
Where to find optimal type of sand from borrow areas?
Infill rate of present sand mining areas
Location/ depth of hard geological layers (clay)
Questions from our Clients

Offshore Windfarms
Optimal locations of individual wind turbines? Seabed lowering / raise?
Scour extend /magnitude at wind turbines & offshore constructions?
Seabed level > 40 years?

Deltares, 2016
Questions from our Clients

Offshore Windfarms
Optimal locations of individual wind turbines?
Scour extend /magnitude at wind turbines & offshore constructions?
Seabed level > 40 years?

Cables
Minimum required burial depth cables > 40 years? => exposure
Maximum possible burial depth cables > 40 years? => thermal radiation
Optimal cable routing with lowest CAPEX-OPEX?
Best landfall locations?
Maintenance dredging requirements of trenches/ dredged channels
Effect of sweeping (cut-off crests) sand waves
Most plausible location & depth of Uxo’s 1940 => 2018?

Sand mining areas
Where to find optimal type of sand from borrow areas?
Infill rate of present sand mining areas
Location/ depth of hard geological layers (clay)
Questions from our Clients

Offshore Windfarms

- Optimal locations of individual wind turbines?
- Scour extend/magnitude at wind turbines & offshore constructions?
- Seabed level > 40 years?
- Cables: Minimum required burial depth cables > 40 years? Maximum possible burial depth cables > 40 years?
- Optimal cable routing with lowest CAPEX - OPEX?
- Best landfall locations?
- Maintenance dredging requirements of trenches/dredged channels?
- Effect of sweeping (cut-off crests) sand waves?
- Most plausible location & depth of Uxos 1940 => 2018?
- Sand mining areas: Where to find optimal type of sand from borrow areas? Infill rate of present sand mining areas

Legend:
- Bathymetry
- Meters
- 0-1
- 1-3
- 3-5
- 5-10
- 10-15
- 15-20
- 20-25
- 25-30
- 30-35
- 35-40
- 40-50
- 50-60
- 60-70
- 70-80
- 80-90
- 90-100
- 100-150
- 150-200
- 200-250
- 250-300
- 300-350
- 350-400
- 400-450
- 450-500

- Stations
- Expert cables
- Gateway connection
- Pipelines
- Pipelines natural turn over zones (5000m)
- Kilometres/5 km
- Kilometres/10 km
- Alpha 1 Long
- Alpha 2 Long
- Beta 1 Long
- Beta 2 Long
- Alpha 1 Short
- Alpha 2 Short
- Beta 1 Short
- Beta 2 Short
- Line zab
- Subsea terminal
- Disposal areas (level N63-R67)
- Disposal areas (Wedgepipe tunnels)
- Disposal areas (level N67-R68)
- Traffic separation boundary
- Wastewater Maasgouw

- HKZ parois
- Wind farm sites

Crossing sandwave field perpendicular
Crossing sandwave field parallel
Crossing sand mining pit
Crossing dumping ground
Crossing Maasgeul
Landfall

Kilometers
Questions from our Clients

Offshore Windfarms
Optimal locations of individual wind turbines?
Scour extend /magnitude at wind turbines & offshore constructions?
Seabed level > 40 years?

Cables
Minimum required burial depth cables > 40 years?
Maximum possible burial depth cables > 40 years?
Optimal cable routing with lowest CAPEX-OPEX?
Best landfall locations?
Maintenance dredging requirements of trenches/ dredged channels
Effect of sweeping (cut-off crests) sand waves
Most plausible location & depth of Uxo’s 1940 => 2018?

Sand mining areas
Where to find optimal type of sand from borrow areas?
Infill rate of present sand mining areas
Location/ depth of hard geological layers (clay)
Questions from our Clients

Sand mining areas
Where to find optimal type of sand from borrow areas?
Infill rate of present sand mining areas
Location/depth of hard geological layers (clay)
Development of knowledge

Scour (Existing research programme and JIP's ongoing):
- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:
- Decrease uncertainties sebed dynamics by:
 - High frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave dredging

Sediment transport & mega ripple dynamics and its effects on:
- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:
- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:
- Improve the geological & thermal resistivity models
- In-situ measurements of heat dissipation from cables
Development of knowledge

Scour (Existing research programme and JIP's ongoing):
- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:
- Decrease uncertainties seabed dynamics by:
 - High frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave dredging

Sediment transport & mega ripple dynamics and its effects on:
- Sand wave migration
- Sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:
- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:
- Improve the geological & thermal resistivity models
- In-situ measurements of heat distribution above cables

Case I, *Case II*, *Case III*
Development of knowledge

Long-term seabed dynamics:
- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Sediment transport & mega ripple dynamics and its effects on:
- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:
- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:
- Improve the geological & thermal resistivity models
- In-situ measurements of heat distribution above cables
Development of knowledge

Scour (Existing research programme and JIP’s ongoing):
- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:
- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Sediment transport & mega ripple dynamics and its effects on:
- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas
Development of knowledge

Long-term foreshore dynamics:
- How will the foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy, and;
 - Storms irt Climate change

Deltares, 2016
Development of knowledge

Scour (Existing research programme and JIP’s ongoing):
- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:
- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Sediment transport & mega ripple dynamics and its effects on:
- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:
- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:
- Improve the geological & thermal resistivity models
- In-situ measurements of heat dissipation from cables
To fully understand the seabed dynamics and decrease the uncertainties in our designs, a combination of frequent measurements and 3D modelling is key.