NCK theme day OASE

Offshore Activities and seabed evolution Opportunities & Challenges

Luitze Perk

Trends

Offshore developments:

Ongoing construction of Offshore Windfarms

WATER

- Related need for burial of Export- and infield cables
- Growing demand of sand for nourishments (from sand mining areas)

Offshore Windfarms

Optimal locations of individual wind turbines? Scour extend /magnitude at wind turbines & offshore constructions? Seabed level > 40 years?

Cables

Minimum required burial depth cables > 40 years? Maximum possible burial depth cables > 40 years? Optimal cable routing with lowest CAPEX-OPEX? Best landfall locations? Maintenance dredging requirements of trenches/ dredged channels Effect of sweeping (cut-off crests) sand waves Most plausible location & depth of Uxo's 1940 => 2018?

Sand mining areas

Where to find optimal type of sand from borrow areas? Infill rate of present sand mining areas Location/ depth of hard geological layers (clay)

Offshore Windfarms

Optimal locations of individual wind turbines? Seabed lowering / raise? Scour extend /magnitude at wind turbines & offshore constructions? Seabed level > 40 years?

Offshore Windfarms

Optimal locations of individual wind turbines? Scour extend /magnitude at wind turbines & offshore constructions? Seabed level > 40 years?

Cables

Minimum required burial depth cables > 40 years? => exposure Maximum possible burial depth cables > 40 years? => thermal radiation Optimal cable routing with lowest CAPEX-OPEX? Best landfall locations? Maintenance dredging requirements of trenches/ dredged channels Effect of sweeping (cut-off crests) sand waves Most plausible location & depth of Uxo's 1940 => 2018?

Sand mining areas

Where to find optimal type of sand from borrow areas? Infill rate of present sand mining areas Location/ depth of hard geological layers (clay)

Legend

Bathymetry

Sand mining areas Station --- Export cable - - - Cables inactive - Pipelines - - - Pipelines inactive

 Kilometering 1 km Kilometering 5 km Alpha 1 Long - Alpha 2 Long - Beta 1 Long Beta 2 Long Alpha 1 Short Alpha 2 Short Beta 1 Short Beta 2 Short

> Linkcable68 Borrow areas

- - Widened Maasgeul **HKZ** parcels

Wind farm sites

11 IV.

Crossing sandwave field perpendicular

Crossing sandwave field parallel

Crossing sand mining pit

Crossing dumping ground

Crossing Maasgeul

Landfall

Offshore Windfarms

Optimal locations of individual wind turbines? Scour extend /magnitude at wind turbines & offshore constructions? Seabed level > 40 years?

Cables

Minimum required burial depth cables > 40 years? Maximum possible burial depth cables > 40 years? Optimal cable routing with lowest CAPEX-OPEX? Best landfall locations? Maintenance dredging requirements of trenches/ dredged channels Effect of sweeping (cut-off crests) sand waves Most plausible location & depth of Uxo's 1940 => 2018?

Sand mining areas

Where to find optimal type of sand from borrow areas? Infill rate of present sand mining areas Location/ depth of hard geological layers (clay)

Sand mining areas

Depth [m+LAT]

Where to find optimal type of sand from borrow areas? Infill rate of present sand mining areas Location/ depth of hard geological layers (clay)

5.777

Scour (Existing research programme and JIP's ongoing):

- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:

- Decrease uncertainties seabed dynamics by:
 - High frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave dredging

Sediment transport & mega ripple dynamics and its effects on:

- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:

- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:

- Improve the geological & thermal resistivity models
- In-situ measurements of heat dissipation from cables

WATER

Scour (Existing research programme and JIP's ongoing):

- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Development of know

Long-term seabed dynamics:

- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Scour (Existing research programme and JIP's ongoing):

- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:

- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Sediment transport & mega ripple dynamics and its effects on:

- sand wave migration
- sedimentation of trenches

- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:

- How will the foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy, and;

WATER PROOF

- Storms irt Climate change

Scour (Existing research programme and JIP's ongoing):

- Effect of type of structure
- Effect of sediment characteristics/ depth / environmental conditions

Long-term seabed dynamics:

- Decrease uncertainties seabed dynamics by:
 - More frequent bathymetrical surveys
 - 3D modelling of sand waves to better understand effects of parameters as: depth, tidal flow, waves, grain size, etc. on dynamics
 - Pilot projects (or monitor existing works) of sand wave reformation after dredging

Sediment transport & mega ripple dynamics and its effects on:

- sand wave migration
- sedimentation of trenches
- Long-term dynamics of present sand mining areas

Long-term foreshore dynamics:

- How will foreshore evolve in time:
 - given our management strategy not allowing regression of our coastline (steepening of coastline), and;
 - related nourishment strategy

Thermal resistivity of the subsoil:

- Improve the geological & thermal resistivity models
- In-situ measurements of heat dissipation from cables

WATER PROOF To fully understand the seabed dynamics and decrease the uncertainties in our designs, a combination of frequent measurements and 3D modelling is key

